CBCS SCHEME

USN

15MAT11

First Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. If
$$y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$$
, prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$. (06 Marks)

b. Prove that the following pairs of curves intersect orthogonally
$$r = a \sec^2\left(\frac{\theta}{2}\right)$$
;

$$r = a \csc^2\left(\frac{\theta}{2}\right)$$
. (05 Marks)

c. Show that for the curve
$$r = a(1 + \cos\theta)$$
, $\frac{\rho^2}{r}$ is const. (05 Marks)

2 a. Find the nth derivative of
$$\frac{x^2}{(x+2)(2x+3)}$$
. (06 Marks)

b. Find the pedal equation for the curve
$$r = a \sin^3 \left(\frac{\theta}{3}\right)$$
. (05 Marks)

c. For the ellipse
$$x = a \cos t$$
; $y = b \sin t$, find $\frac{ds}{dt}$. (05 Marks)

Module-2

3 a. Expand
$$log(1 + e^x)$$
 upto the term containing x^4 using MaClaurin's series. (06 Marks)

b. Evaluate
$$\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}}$$
. (05 Marks)

c. If
$$u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
, show that $\Sigma u_{xx} = 0$ (05 Marks)

4 a. If
$$u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$$
 then show that $xu_x + yu_y = 3\tan u$. (06 Marks)

b. Expand sin x inpowers of
$$\left(x - \frac{\pi}{2}\right)$$
 upto 4th degree terms on the Taylor's series. (05 Marks)

c. If
$$u = z - x$$
, $v = y - z$, $w = x + y + z$, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. (05 Marks)

Module-3

a. Find the angle between the tangents to the curve $\vec{r} = t^2 \hat{i} + 2t \hat{j} - t^3 k$ at $t = \pm 1$. (06 Marks)

b. Find the directional derivative of $\phi = 2xy + z^2$ at the point (1, -1, 3) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$. (05 Marks)

15MAT11

c. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at (2, -1, 2).

(05 Marks)

OR

- 6 a. Find the divergence and curl of the vector $\vec{F} = (xyz + y^2z)\hat{i} + (3x^2 + y^2z)\hat{j} + (xz^2 zy^2)\hat{k}$ at (1, -1, 1).
 - b. Show that $\vec{F} = 3x^2y\hat{i} + (x^3 2yz^2)\hat{j} + (3z^2 2y^2z)\hat{k}$ is irrotational and hence find the scalar potential ϕ . (05 Marks)
 - c. Prove that $\operatorname{div}(\phi \vec{F}) = \phi(\operatorname{div} \vec{F}) + \nabla \phi \vec{F}$ (05 Marks)

Module-4

- 7 a. Obtain the reduction formulae for $\int_{0}^{\pi/2} \cos^{n} x dx$. (06 Marks)
 - b. Evaluate $\int_{0}^{4} x^3 \sqrt{4x x^2} dx$. (05 Marks)
 - c. Solve $y[xy\sin(xy) + \cos(xy)]dx + [xy\sin(xy) \cos(xy)]xdyx$. (05 Marks)

OR

- 8 a. Evaluate $\int_{0}^{2a} x^{\frac{7}{2}} (2a-x)^{-\frac{1}{2}} dx$. (06 Marks)
 - b. Solve $\frac{dy}{dx} = \frac{1}{x^2y^3 + xy}$. (05 Marks)
 - c. Find the orthogonal trajectories of the family of curves $\frac{2a}{r} = 1 \cos \theta$. (05 Marks)

Module-5

- 9 a. Apply Gauss-Jordan method to solve 2x + 5y + 7z = 52; 2x + y z = 0; x + y + z = 9. (06 Marks)
 - b. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5 \end{bmatrix}$ by elementary transformation. (05 Marks)
 - c. Find the dominant eigen value and the corresponding eigen vector of the matrix by power

method
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$
 by as $[1, 0.8, -0.8]^T$. (05 Marks)

OR

- 10 a. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12yz + 4zx 8xy$ to canonical form. (06 Marks)
 - b. Diagonalize the matrix $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$ and hence find A^4 . (05 Marks)
 - c. Show that the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$; $y_3 = x_1 2x_3$ is Regular and hence find the inverse transformation. (05 Marks)